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0. Introduction. A calculus for "just plain folks", «Workshop, 1986 #35», need not be based
on the notion of limits. Indeed, and it is an  idea going back at least to «Lagrange, 1797 #17»,
functions can be studied locally from their jets, that is from their best polynomial approximations,
obtained a priori. In «Schremmer, In Press #23», we sketched such an approach in the case of
polynomial functions and in «Schremmer, In preparation #24», we will discuss rational functions
and show how, in this particular case, we can even derive a certain amount of global information
from a small number of local investigations.

Here, after briefly recapitulating the main features of Lagrange's approach, we discuss how it
applies to functions defined by functional equations, algebraic and differential.

1. Lagrange's approach.  To  expand a function f near a given point x0, we  first localize it,
that is we get a form in which the terms are in descending order of magnitude, by expressing  f(x0 +
h), the value of the function  f near x0, as a polynomial function Fx 0

(h) plus a remainder Rx 0
(h)

f(x0 + h) = Fx 0
(h)+ Rx 0

(h),

where Fx 0
(h) = A0 + A1h + A2h2 + A3h3 + ... + Anhn  and  Rn(h) = hnÙo[1] so that Px 0

(h) is the
best polynomial approximation of degree n of f(x0 + h). For all practical purposes, we shall
just write f(x0 + h) = Fx 0

(h)+ ... .
 We take the differential calculus to consist of "the techniques used to find out certain

properties of functions" «Gleason, 1967 #34». The degree n of the approximation that we require
depends on the nature of the required information. For instance, from a qualitative viewpoint, the
sign  of f near x0 is given by the least non-zero approximation  (usually the best constant
approximation), the variance is given by the least non-constant approximation (usually the best
affine approximation) and the concavity is given by the least non-affine approximation (usually the
best quadratic approximation).

From a quantitative viewpoint, the it h derivative of f is defined as the function  f(n ) whose
value at x0 is i! Ai which gives:

f(x0 +h) = f(x0) + f'(x0)h + f"(x0)h2/2 + f( 3 )(x0)h3/3 + ... + f(n )(x0)hn/n! + ...
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For instance, [xn]' = (n–1)xn– 1 because (n–1)x0
n– 1 is the coefficient of h in the (binomial) expansion of (x0 + h)n.

Similarly, to obtain the derivative of [f *g], where * is any operation, we take the coefficient of h in the expansion
of [f *g](x0+h).

That we  recover the Taylor expansion of f should lead us to expect that Cn functions are
amenable to Lagrange's approach and, in fact, the statement that "all decent functions have
continuous derivatives" translates into "all decent functions are practically (polynomial)"
«Gleason, 1967 #34».

The first question then is how to find the polynomial approximation. By analogy with
arithmetic, it is, in the case of polynomial functions, by truncation of the high powers near 0 and of
the low powers near È and, in the case of rational functions, by division in ascending powers near 0
and in descending powers near È. Anywhere inbetween requires that we first set x = x0 + h.

2. Functional equations. A distinction worth making at the outset, but in fact usually not
emphasized, is that, when we write f(x) = –3x3 –2x +4, we are defining the function f by the finite
algorithm that gives the value f(x) at any point x while, when we write g(x) = √x, we are defining the
function g as solution of a functional equation, g2 (x) = x, without giving any algorithm for solving
this equation and computing the value g(x). It is only in the first case that a function can truly be
equated with a machine. Another fact not usually stressed is that, in most cases and even in that of
rational functions, the algorithm only gives approximate values1 .

A practical consequence is that, when given a function such as  f(x) = 3  
x – 1
x2 + 1

  , the

students rarely realize that the first thing to do is to find the functional equation of which it is the
solution that is, with due regard to sign considerations,

f6 (x) = 
(x – 1)2

x2 + 1  .

At this point however, we can find the value of the derivative at 0 faster and more reliably than by
evaluating the derivative obtained by the usual rules. To get the Best Affine Approximation near 0,
we set f0 (x) = A0 + A1x + ... and substitute in the functional equation:

[A0 + A1x + ...]6 =  
(x – 1)2

x2 + 1  

A06 + 6 A15x + ... = 
1 –2x + ...

1 + ...  

 = 1 –2x + ...

                                                
1  Even in arithmetic, students are rarely given the opportunity to realize, for instance, that 52+3 is a

constructive template even if the algorithm is not actually given but that √5, or for that matter  5
3  or even 5–3, is

nothing but the name given a priori to the solution of an equation, x2 = 5, (resp. 3x = 5 or x + 3 = 5) , should it
exist, and that, in fact, we can usually only approximate the solution. Thus, the distinction between arithmetic and
algebra is somewhat counterproductive if not disingenuous.
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Identifying the coefficients gives A0 = 1 and A1 = –
5 1

3  so that f0 (x) = 1 –
5 1

3  x + ... and  f'(0) =

–
5 1

3  . The equation of the tangent at the origin is, of course, t0 (x) = –
5 1

3  x + 1.

To obtain the derivative of f(x), we need the coefficient of h at x0. We localize:

f(x0 + h)6 =  
(x0 + h – 1)2

(x0 + h)2 + 1  

and expand

(A0 + A1h + ...)6 = 
(x0–1)2 + 2(x0–1)h + ...

x02 + 1 +2x0h + ...  

Dividing in ascending powers, we get

A06 + 6A1h + ... = 
(x0   – 1)2

x02 + 1   + 
3x02  – 2x0 – 1

x0(x02 + 1)   h + ...

Identifying the coefficients gives A0 = 
6 (x0   – 1)2

x02 + 1    and A1 = 
3x02  – 2x0 – 1
6x0(x02 + 1)  

Observe that getting the second derivative would not be that much more difficult.

12. EXPONENTIAL AND LOGARITHM FUNCTIONS. There are at least three approaches to
the exponential function ax . The approach most currently favored these days is to begin by
introducing the notion of integral in the middle of the differential calculus for the sole purpose of

defining ex as 







⌡
⌠dx

x  
–1

, the inverse of the indefinite integral of the reciprocal function!

A more natural way would be to extend the notion of power to irrational exponents and
introduce ax  as limit of asn, where sn is rational and approaches x as n approaches È. Unfortunately,
establishing the usual computational rules is a rather forbidding exercise.

The third approache introduces ax   as solution of the initial value problem
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f'(x) = kf(x),
f(x0) = y0.

We first consider the case k = 1, x0 = 0.

Let f(x) = A0 + A1x + A2x2 + A3x3 + ... + Anxn which we differentiate to get f'(x) = A1 + 2A2x
+ 3A3x2 + 4A4x3 + ... + nAnxn–1 Substituting in the differential equation, neglecting the term Anxn

in f(x) since it is small when x is near 0 and identifying the coefficients we obtain:

  A0 = y0   (from the initial condition)
  A1 = A0
2A2 = A1
3A3 = A2

....
nAn = An–1

from which we get An= 
y0
n!  and f(x) = y0∑

i =  0

i=n
xn

n!   + ... that is  f(x) = f(x0)∑
i =  0

i=n
xn

n!   + ...

It is interesting to note that many of the properties of the exponential function can be recovered
from this approximation. In particular, we have an addition formula for a and b near 0 :

f(a)f(b) = y0[1 + a + 
a2

2!  + 
a3

3!  + ...]y0[1 + b + 
b2

2!  + 
b3

3!  + ...]

= y02[1 + a + 
a2

2! + 
a3

3! + ...

+b + ab + 
a2b
2!  + ...

+
b2

2! + 
ab2

2!  + ...

+
b3

3! + ... ]
= y02[1 + (a + b)+ 

(a + b)2

2!   + 
(a + b)3

3!   + ... ]
= y0f(a+b)

since ' ... ' stands for finite remainders and not for infinite tails. We thus have

f(x0 + h) = 1 + (x0 + h)+ 
(x0 + h)2

2!   + 
(x0 + h)3

3!   + ... 

= [1 + x0 + 
x02

2!   + 
x03

3!   + ...][1 + h + 
h2

2!  + 
h3

3!  + ... ]

= f(x0)f(h)

which we use to localize.
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We can find an approximate solution near x0 by localizing. Writing f(x0+h) = fx 0(h) and since  by
the chain rule f'(x) = f'x 0(h), the differential problem becomes

f'x 0(h) = fx 0(h)
fx 0(0) = y0

which gives fx 0(h) = y0∑
i =  0

i=n
hn

n!   + ...

Once the existence of a solution f(x) of the initial value problem f'(x) = f(x) , f(0) = 1 is as-
sumed, the properties of f(x) are easily obtained.

1. f(x) ≠ 0 for all x. Differentiating f(x)f(–x) we get 0 so that f(x)f(–x) = c with c = 1 by the
initial condition.

2. f(–x) = f(x)–1.
3. Uniqueness. Let g be another solution. Then [g/f]' = 0 so that g = kf for some k. From the

initial condition, k = 1 and g = f.
4. Positivity. From 1. and the differential equation, f'(x) cannot have a zero so that, by the

Intermediate Value Theorem, f'(x) must keep the same sign for all x and since f'(0) = 1, f'(x) > 0 for
all x.

5. Increasingness. Follows from 4.
6. f(a + b) = f(a)f(b). Consider the function g(a + x). Then g'(a + x) = f'(a + x) = f(a + x) =

g(x), so that g(x) = kf(x) with k such that k = g(0) = f(a). so, f'(a + x) = f(a)f(x) for all x.
7. f(x) = ex . We have f(na) = f(an) for all positive integer n because it is true for n = 1 and, as-

suming it for n, we have f((n+1)a) = f(na + a) = f(na)f(a) = fn(a)f(a) = fn+1(a). Defining e = f(1)
gives f(n) = en. Since f is strictly increasing, we have 1 < e from f(0) < f(1). We also have from 2.
that f(–n) = f(n)–1 = e–n and the result follows.

8. Graph. Since e > 1, write e = 1 + b with b > 0 so that en = (1 + b)n ≥ 1 + nb. Since ex is
strictly increasing, ex  å È when x å È. Finally, e– x å 0 when x å È so that ex  å 0 when x å –È. This
gives the qualitative look of the graph.

9. Comparison with power functions: limnåÈ (xn/ex) = 0. First show that limnåÈ (n/cn) = 0, c > 1,
by setting c = 1 + b and observing that (1 + b)n ≥ 1 + nb + n(n – 1)/2Ùb2 and dividing by n. Now
let ϕ(x) = x/en. Then ϕ'(x) = ex(1 – x)/e2x and ϕ'(x) < 0 when x > 1. Hence ϕ is strictly decreasing
and ϕ(x) å 0 when x å È. A similar proof gives limnåÈ (xn/ex) = 0.

The logarithm function can then be introduced as inverse of the exponential function. See [2]
for details.

Note, however, that Ln(x) is easily approximated near x0 = 1 as solution of f'(x) = 1/x with the
initial condition f(1) = 0 since, by the chain rule, f'(x)|x0+h = f'h(x0 + h) so that if we set f(x0 + h) =
A 0+ A1h + A2h2 + A3h3 + ... we have f'(x)|x0+h = A1 + 2 A2h + 3 A3h2 + ... which must then be
equal to 1/[1 + h] = 1 – h + h2 – h3 + ..., that is  A1 + 2 A2h + 3 A3h2 + ... = 1 – h + h2 – h3 + ...
from which we get the coefficients  A0,  A1,  A2, ... . In fact, here again, we need not expand near 1
but we can expand it near any x0 ≠ 0 as soon as we have f(x0). The process can therefore be
iterated.
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13. TRIGONOMETRIC FUNCTIONS. We can define sine and cosine as solutions of the
system f' = g and g' = f with the initial conditions f(0) = 0 and g(0) = 1 and we can again recover
the usual properties from the system. See [2] for the details.

In a more "physical" manner, we can also define them as solutions of f"= –f with the appro-
priate initial conditions: f(0) = 1 and f'(0) = 0 for the cosine and f(0) = 0 and f'(0) = 1 for the sine
and we can again recover the usual properties from the system. In either case, π/2 is defined as the
smallest zero of cosx. See [1] for the details.
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